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Abstract

Dynamic memory management in C++ is one of the most common areas of difficulty and
errors for amateur and expert C++ developers alike. The improper use of operatornew and op-
eratordelete is arguably the most common cause of incorrect program behavior and segmen-
tation faults in C++ programs. Here we introduce a templatedconcrete C++ classTeuchos-
::RCP , which is part of the Trilinos tools packageTeuchos , that combines the concepts of
smart pointers and reference counting to build a low-overhead but effective tool for simplifying
dynamic memory management in C++. We discuss why the use of raw pointers for mem-
ory management, managed through explicit calls to operatornew and operatordelete , is so
difficult to accomplish without making mistakes and how programs that use raw pointers for
memory management can easily be modified to useRCP. In addition, explicit calls to operator
delete is fragile and results in memory leaks in the presents of C++ exceptions. In its most
basic usage,RCPautomatically determines when operatordelete should be called to free an
object allocated with operatornew and is not fragile in the presents of exceptions. The class
also supports more sophisticated use cases as well. This document describes just the most basic
usage ofRCPto allow developers to get started using it right away. However, more detailed in-
formation on the design and advanced features ofRCPis provided by the companion document
“Teuchos::RCP : The Trilinos Smart Reference-Counted Pointer Class for (Almost) Automatic
Dynamic Memory Management in C++”.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.
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1 Introduction

The main purpose of this document is to provide a quick-startguide on how to incorporate the
reference-counting smart pointer classTeuchos::RCP into C++ programs that use dynamic memory
allocation and object orientation. This code is included inthe Trilinos [3] tools packageTeuchos .
The design ofTeuchos::RCP is based partly on the interface forstd::auto ptr<> and Items 28
and 29 in ”More Effective C++” [5]. In short,RCP allows one client to dynamically create an
object (using operatornew for instance), pass the object around to other clients that need to access
the object and never require any client to explicitly call operatordelete . The object will (almost
magically) be deleted when all of the clients remove their references to the object. In principle,
this is very similar to the type of garbage collection that isin languages like Perl and Java. There
are some pathological cases (such as the classic problem of circular references, see [5, Item 29,
page 212]) whereRCPwill result in a memory leak, but these situations can be avoided through
the careful use ofRCP. However, realizing the potential of hands-off garbage collection with RCP
requires following some rules. These rules are partially spelled out in the form of commandments
in Appendix C.

Note that direct calls to operatordelete are discouraged in modern C++ programs that are
designed to be robust in the presence of C++ exception handing. This is because the raw use of
operatordelete often results in memory leaks when exceptions are thrown. For example, in the
code fragment:

void someFunction()
{

A *a = new A;
a->f();
delete a;

}

if an exception is thrown in the function calla->f() then the statementdelete a will never be
executed and a memory leak will have been created. The classstd::auto ptr<> was added to the
standard C++ library (see [5, Items 9 and 10]) to protect against these types of memory leaks. For
example, the rewritten function:

void someFunction()
{

std::auto_ptr<A> a(new A);
a->f();

}

is robust in the event of exceptions and no memory leak will occur. However,std::auto ptr<>
can not be used to share a resource between two or more clientsand therefore is not an answer to
the issue of general garbage collection. The classRCPnot only is robust in the event of exceptions
but also implements reference counting and is therefore more general (but admittedly more complex
and expensive) thanstd::auto ptr<> .

The use ofRCP is critically important in the development and maintenanceof large complex
object-oriented programs composed of many separately-developed pieces (such as Trilinos). This
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discussion assumes that the reader has a basic familiarity and some programming experience with
C++ and has at least been exposed to the basic concepts of object-oriented programming (good
sources include [2] and [6]). Furthermore, the reader should be comfortable with the use of C++
pointers and references.

The appendices contain basic reference material forRCP. In many respects, the appendices are
the most important contribution of this document. For thosereaders that like to see the C++ decla-
rations right away, Appendix A contains the C++ declarations for the template classRCPand some
important associated non-member templated functions. Appendix B is a short reference-card-like
quick-start for the use ofRCP. The quick-start in this appendix shows how to createRCPobjects
from raw C++ pointers, how to represent different forms on constantness, cast from one pointer
type to another, access the underlying reference-counted object as well as to associate and manage
extra data. Appendix C gives some commandments for the use ofRCPand reinforces the material
in Appendix B. Appendix D gives tables of recommended idiomsfor how to pass raw C++ objects
andRCP-wrapped objects to and from functions. Appendix E gives a listing for an example program
that uses raw pointer variables and direct calls to operatornew and operatordelete while Appendix
F shows a refactoring of this example program to useRCP.

Note! Anxious readers are encouraged to jump directly to AppendixE and F to get an idea of
whatRCPis all about. This example, together with the reference material in the appendices, should
be enough for semi-experienced C++ developers to start using RCPright away.

For less anxious readers, in the following section, we describe why the use of raw C++ pointers
and raw calls to operatornew and especially operatordelete is difficult to program correctly in
even moderately complex C++ programs. We then discuss the different ways C++ pointers are
used in such programs and describe how to refactor these programs to replace some of the raw
C++ pointers and raw calls to operatordelete with RCP. In the following discussion we will define
persistingandnon-persistingassociations and will make a distinction between them (see page 11).
RCPis recommended for use only withpersistingassociations. The consistent use ofRCPextends the
vocabulary of C++ in helping to distinguish between these two types of relationships. In addition,
RCPis designed for the memory management of individual objects, not raw C++ arrays of objects.
Array allocation and deallocation should be performed using standard C++ containers such asstd-
::vector<> , std::valarray<> or some other such convenient C++ array class but the best choice
is typically a debug range-checked class likeTeuchos::Array . However, it is quite common to
dynamically allocate arrays ofRCPobjects and useRCPto manage the lifetime of such array class
objects.
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2 An example C++ program

The use of object-oriented (OO) programing in C++ is the major motivation for the development
of RCP. OO programs are characterized by the use of abstract classes (i.e. interfaces) and concrete
subclasses (i.e. implementations). In OO programs it is common that the selection of which concrete
subclass(es) to use is not known until runtime. The “Abstract Factory” [2] is a popular design pattern
that allows the flexible runtime selection of what concrete subclasses to create.

Below we describe a fictitious program that demonstrates some of the typical features of an OO
program that uses dynamic memory management in C++. In this simple program, handling memory
management using raw C++ pointers and calls to operatornew and operatordelete will appear
fairly easy but larger more realistic OO programs are much more complicated and it is definitely not
easy to do memory management without some help.

2.1 Example C++ program using raw dynamic memory management

One of the predominate features of this example program is the use of the following abstract inter-
face base classUtilityBase that defines an interface to provide some useful capability.

class UtilityBase {
public:

virtual void f() const = 0;
};

In our example program,UtilityBase will have two subclasses where one or the other will be
used at runtime.

class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this ="<<this<<"\n"; }
};

class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this ="<<this<<"\n"; }
};

In this example program the above implementation functionsjust print to standard out.

Some of the clients in this program have to createUtilityBase objects without knowing ex-
actly what concrete subclasses are being used. This is accomplished through the use of the “Abstract
Factory” design pattern [2]. ForUtilityBase , the abstract factory looks like

class UtilityBaseFactory {
public:

virtual UtilityBase* createUtility() const = 0;
};
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and has the following factory subclasses for creatingUtilityA andUtilityB objects.

class UtilityAFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityA( ); }
};

class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB( ); }
};

Now let’s assume that our example program has the following client classes.

// Simple client with no state
class ClientA {
public:

void f( const UtilityBase &utility ) const { utility.f(); }
};

// Client that maintains a pointer to a Utility object
class ClientB {

UtilityBase *utility_;
public:

ClientB() : utility_(0) {}
˜ClientB() { delete utility_; }
void initialize( UtilityBase *utility ) { utility_ = utilit y; }
void g( const ClientA &a ) { a.f(*utility_); }

};

// Client that maintains pointers to UtilityFactory and Uti lity objects
class ClientC {

const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:
ClientC( const UtilityBaseFactory *utilityFactory, bool shareUtility )

:utilityFactory_(utilityFactory),
utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

˜ClientC() { delete utilityFactory_; delete utility_; }
void h( ClientB *b ) {

if( shareUtility_ ) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility()) ;

}
};

The type of logic used inClientC for determining when new objects should be created or when
objects should be reused and passed around is common in larger more complicated OO programs.

The above client classes demonstrate two different types ofassociations between objects:non-
persistingandpersisting.
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Non-Persisting associationsexist only within a single function call and do not extend after the
function has finished executing. For example, objects of type ClientA and UtilityBase have
a non-persisting relationship through the functionClientA::f(const UtilityBase &utility) .
Likewise, objects of typeClientB andClientA have a non-persisting association through the func-
tion ClientB::g( const ClientA &a ) .

Persisting associationsare where a relationship between two objects exists past a single func-
tion call. The most typical kind of persisting association in an OO C++ program is where one object
maintains a private pointer data member to another object. For example, persisting associations
exist between aClientC object, aUtilityBaseFactory and aUtilityBase object through the
the private C++ pointer data membersClientC::utilityFactory andClientC::utility re-
spectively. Likewise, a persisting association exists between aClientB object and aUtilityBase
object through the private pointer data memberClientB::utility .

Persisting relationships are significantly more complex than non-persisting relationships since
a persisting relationship usually implies that some objects must be responsible for the lifetime of
other objects. This is never the case in a non-persisting relationship as defined above.

Appendix E shows an example program that uses all of the C++ classes described above. The
program in Appendix E has several memory management problems. An astute reader will notice
that theUtilityBaseFactory created inmain() gets deleted twice; once in the destructor for
the ClientC objectc and again at the end ofmain() in an explicit call to operatordelete . This
problem could be fixed in this program by arbitrating “ownership” of the UtilityBaseFactory
object to eithermain() or theClientC object, but not both which is the case in Appendix E.

A more difficult memory management problem to catch and fix occurs in theClientB and
ClientC objects regrading a sharedUtilityBase object. WhenshareUtility is set tofalse
(by the user in the commandline arguments) the objectsb1, b2 andc each own a pointer to differ-
ent UtilityBase objects and the software will correctly delete each dynamically allocated object
using one and only one call to operatordelete (in the destructors of these classes). However,
whenshareUtility is to set totrue the objectsb1, b2 andc will contain pointers to the same
UtilityBase object and operatordelete will be called on this sharedUtilityBase object multi-
ple times whenb1, b2 andc are destroyed. In this case, it is not so easy to arbitrate ownership of
the sharedUtilityBase object to theClientB or theClientC objects. Logic could be developed
in this simple program to insure that ownership was assignedproperly but such logic would enlarge
the program, complicate maintenance, and would ultimatelymake the software components less
reusable. In more complex programs, trying to dynamically arbitrate ownership at run time is much
more difficult and error prone if done manually.

2.2 Refactored example C++ program usingTeuchos::RCP

Now we describe howRCPcan be used to greatly simplify dynamic memory management inthese
types of OO programs. Appendix F shows the refactoring of theprogram in Appendix E to useRCP
for all persisting relationships. In general, refactoringsoftware that uses raw C++ pointers to use
RCPis as simple as replacing the typeT* with RCP<T>, whereT is nearly any class or built-in data
type.

The first persisting relationship for whichRCPis used is the relationship between aUtility-
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BaseFactory object and a client that uses it. The refactoring changes thereturn type ofUtility-
BaseFactory::createUtility() from a rawUtilityBase* pointer to aRCP<UtilityBase>
object. The new “Abstract Factory” class declarations (assuming that the symbols from theTeuchos
namespace are in scope so that explicitTeuchos:: qualification is not necessary) become

class UtilityBaseFactory {
public:

virtual RCP<UtilityBase> createUtility() const = 0;
};

class UtilityAFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new U tilityA()); }
};

class UtilityBFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new U tilityB()); }
};

In addition to the change of the return type, the refactoringalso requires that calls to operator
new be wrapped in calls to the templated functionTeuchos::rcp(...) .

The refactoring shown in Appendix F does not impact the definition of the classClientA since
this class does not have any persisting relationships with any other objects. However, the definitions
of the classesClientB andClientC do change and become

class ClientB {
RCP<UtilityBase> utility_;

public:
void initialize(const RCP<UtilityBase> &utility) { utili ty_=utility; }
void g( const ClientA &a ) { a.f(*utility_); }

};

class ClientC {
RCP<UtilityBaseFactory> utilityFactory_;
RCP<UtilityBase> utility_;
bool shareUtility_;

public:
ClientC( const RCP<UtilityBaseFactory> &utilityFactory , bool shareUtility )

:utilityFactory_(utilityFactory),
utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

void h( const Ptr<ClientB> &b ) {
if( shareUtility_ ) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility()) ;

}
};

The first thing that one should notice about the refactoredClientB andClientC classes is that
their destructors are gone. It turns out that the compiler-generated destructors do exactly the correct
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thing (i.e. call the destructor on theRCPdata members which in turns calls operatordelete on the
underlying reference-counted object when the reference count goes to zero). The second thing that
one should notice is that the old default constructorClientB::ClientB() which initialized the raw
C++ pointerutility to null is no longer needed sinceRCPhas a default constructor that does that.
A third thing to notice about these refactored client classes is that theRCPobjects are passed by
const reference (see Appendix D) and not by value as the corresponding raw pointers where in the
original unfactored classes. PassingRCPobjects byconst reference yields slightly more efficient
code and simplifies stepping through the code in a debugger. For example, a function declared as

void someFunction( RCP<A> a );

will always result in the copy constructor forRCPbeing called (and therefore stepped into in a
debugger) while this same function declared as:

void someFunction( const RCP<A> &a );

will often not require the copy constructor be called (except in cases where an implicit conversion
is being performed as described in Appendix B) and thereby easing debugging.

Lastly, above, the classPtr is a Teuchos non-reference-counted smart pointer class designed to
avoid raw pointers. It is used for non-persisting associations where a raw pointer would otherwise
be used. Ptr initializes to NULL and in debug mode it will throw exceptionexceptions when
dereferencing NULL.Ptr plays a small role in the overall strategy to avoid all raw C++pointers at
the application programming level.

As an aside, note that Appendix D gives recommended idioms for how to pass raw C++ objects
andRCP-wrapped objects to and from functions in a way that result infunction prototypes becoming
as self documenting as possible, help to avoid coding errorsand increase the readability of C++
code. Also, in addition to the benefit thatRCPeases dynamic memory management, the selective
use ofRCPand raw C++ object references extends the vocabulary of the C++ language by helping
to distinguish between persisting and non-persisting associations. For example, when a one sees a
function prototype where an object is passed through aRCPsuch as

class SomeClass {
public:

void someFunction( const RCP<A> &a );
}

one can automatically deduce that “memory” of theA object will be retained (through a private
RCP<A>data member inSomeClass no doubt) and that should automatically alter how the developer
plans on calling that function and passing theA object. The refactored C++ program in Appendix F
provides an example of how the idioms presented in Appendix Dare put to use.
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3 Additional and advanced features ofRCP

The use cases forRCPdescribed above comprise a large majority of the relavent use cases in most
programs, but there there are some other use cases that require additional and more advanced fea-
tures. Some of these additional features (the C++ declarations for which are shown in Appendix A)
are mentioned below:

1. Casting

RCPobjects can be casted in a manner similar to casting raw C++ pointers and the same
types of conversion rules apply. Analogs of the built-in castsstatic cast<> , const cast<>
anddynamic cast<> are supported by the non-member templated functionsrcp static -
cast<> , rcp const cast<> and rcp dynamic cast<> respectively. See Appendix B for
examples of how they are used.

2. Reference-count information

The functionRCP::count() returns the number ofRCPobjects that point to the underlying
reference-counted object. This information can be useful in some cases.

3. Customized deallocation policies

The default behavior ofRCPis to call operatordelete on reference-counted objects once the
reference count goes to zero. While this is the most commonlyneeded behavior, there are
use cases where more specialized dellocation polices are required. For these cases, there is
an overloaded form of the templated functionTeuchos::rcp(...) that takes a templated
deallocation policy object that defines how a reference-counted object is deallocated when
required.

4. Associating extra data with a reference-counted object

There are some more difficult use cases where certain types ofinformation or other objects
must be bundled with a reference-counted object and must notbe deleted until the reference-
counted object is deleted. The non-member templated functions set extra data<>(...)
and get extra data<>(...) serve this purpose (see item (6) in Appendix B). Note that
the extra data mechanism relies on anstd::map and string comparisons etc. and can impart
some unacceptably high overhead in some use cases.

5. Embeddeding an object on creation of an RCP object

Similar to the use of extra data, the RCP class also supports the concept of an embedded
object. The functionsrcpWithEmbeddedObj[PreDestroy,PostDestroy](...) (see 7 in
Appendix B) can be used create anRCPobject and embedd any other value-type object in
the createdRCPNode. This uses a customized deallocator class and imparts less overhead
than the extra data feature at the cost of being less flexible (i.e. you can can only embedd
a single value object and it must be done right when the firstRCPobject is created). The
advantage of this approach is that access of the embedded object using theget[Nonconst]-
EmbeddedObj(...) is faster than when using extra data but requires that you provide more
information.

6. Checking for memory leaks from circular references
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In a debug build, the user can enable checking for memory leaks caused by circular references
among RCP objects. If cicular references do exist, thenRCPNodeobjects that where created
but not removed are displaed at the end of a program. See the file Teuchos RCP.cpp for
details.

7. Addressing circular references with weak RCP objects

The default mode forRCPis as a “strong” pointer. That means that the underlying reference-
counted object is only deleted after all of the “strong”RCPs to the object are removed. Of
course when you have a circular reference using “strong”RCPs, then that will never happen
and a memory leak will be created for all of the objects involved in the cycle.

To help address this problem, anRCPobject can be tagged as a “weak” pointer. When all of
the “strong”RCPobjects goes away, the underlying reference-counted object is destroyed but
the RCPNodeobject is not if there are any lingering (i.e. dangling) “weak” RCPobjects. In a
debug build of the code, all of the dangling “weak”RCPobjects will thrown exceptions when
clients try to dereference the object through the “weak” pointer. This functionality provides
the foundation for a number of very advanced features. This capability imparts very little
O(1) extra overhead.

The ability to tagRCPobjects as “weak” can be used to help address circular dependencies
in general, clean, and safe way. In a debug build of the code, if any mistakes are made
then exceptions will be thrown with an excellent error messages to help debug the problem.
Without full blown garbage collection, this is about the best that we can do in C++.
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4 Debugging C++ code

One issue that commonly comes up for beginning C++ programmers is how to debug programs that
useRCPwhen they are just used to using raw C++ pointers. I am not going to cover the basics on
how to use debuggers like GDB to debug C++ programs but I will give a few tips that should help
beginning C++ programings get started.

This first problem that begining C++ programmers have is in trying to access the underlying
raw C++ pointer in the debugger. For example, consider the function:

void someFunc( const RCP<const A> &a )
{

a->f();
}

When debugging the above function in a debugger such as GDB, how can you access the un-
derlying raw object of typeA inside of theRCP<A>objecta? Well, in GDB for instance, if you put
a breakpoint on the linea->f() , you can print the address of the underlying object of typeA by
typing:

print a.ptr_

You can print the whole object with:

print *a.ptr_

and so on. In general, if you had code with a raw pointer namedsomePtr that was converted over to
useRCP, you simply access the underlying raw C++ pointer usingsomePtr.ptr in the debugger.
That is all there is to it. See the internal private reprsentation of RCPshown in Appendix A for more
details.

One other note on debugging programs that useRCP that is worth mentioning is how to step
through functions that takeRCPas formal arguments. Consider the simple functionsomeFunc(const
RCP<const A>&) shown above. When this function is called by the following function:

void someFunc2( const RCP<const A> &a )
{

someFunc(a);
}

you can step from the callsomeFunc(a) directly intosomeFunc(...) because the formal argument
a of typeconst RCP<const A>& is a direct match.

However, if any implicit (or explicit) conversion ofRCPobjects is required to complete the
function call, you will end up stepping into the copy constructor forRCPfor each argument requiring
a conversion. For example, the following functions requirethe copy constructor forRCPto be called
in order to call and therefore step into the functionsomeFunc(...) :
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void someFunc3( const RCP<A> &a )
{

someFunc(a); // Convert from RCP<A> to RCP<const A>
}

void someFunc4( const RCP<const B> &b )
{

someFunc(b); // Convert from RCP<const B> to RCP<const A>
}

To avoid having to step into the copy constructor forRCPin these cases, you can just directly set
a breakpoint in the functionsomeFunc(...) . In GDB you can do this by setting the breakpoint by
typing:

break ’someFunc(

followed by typing[Tab] (which will expand the full function prototype) and then typing [Enter] .
With this breakpoint set, you can just typecontinue in GDB and you will enter the function
someFunc(...) without having to step through the copy constructors forRCP.

Debugging strategies in other debuggers is similar but you should get the idea.
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5 Summary

The templated C++ classRCPprovides a low-overhead option for (almost) automatic memory man-
agement in C++. This class has been developed and refined overmany years and has been in-
strumental in improving the quality of software projects that use it consistently (for example see
MOOCHO [1]). Careful use ofRCPeliminates the need to manually call operatordelete when
dynamically allocated objects are no longer needed. Furthermore, it helps to reduce the amount of
code that developers have to write. For example, most classes that useRCPfor dynamically allocated
memory do not need developer-supplied destructors. This because the compiler-generated destruc-
tors do the exactly correct thing which is to call destructors on an object’s constituent data members.
This was demonstrated in the difference between the original and refactored classesClientB and
ClientC described in Sections 2.1 and 2.2.

The classRCPalso has advanced features not found in many other smart-pointer implementa-
tions such as the ability to attach extra data, the customization of the deallocation policy, cicular
reference identification and debugging, and “weak” pointers to help resolve circular references.
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A C++ declarations for RCP

namespace Teuchos {

enum ENull { null };

enum EPrePostDestruction { PRE_DESTROY, POST_DESTROY };

template<class T>
class RCP {
public:

typedef T element_type;
RCP( ENull null_arg = null );
explicit RCP( T* p, bool has_ownership = false );
template<class Dealloc_T>
RCP( T* p, Dealloc_T dealloc, bool has_ownership );
RCP(const RCP<T>& r_ptr);
template<class T2> RCP(const RCP<T2>& r_ptr);
˜RCP();
RCP<T>& operator=(const RCP<T>& r_ptr);
bool is_null() const;
T* operator->() const;
T& operator*() const;
T* get() const;
T* getRawPtr() const;
Ptr<T> ptr() const;
ERCPStrength strength() const;
bool is_valid_ptr() const;
int strong_count() const;
int weak_count() const;
int total_count() const;
void set_has_ownership();
bool has_ownership() const;
Ptr<T> release();
RCP<T> create_weak() const;
template<class T2>
bool shares_resource(const RCP<T2>& r_ptr) const;
const RCP<T>& assert_not_null() const;
const RCP<T>& assert_valid_ptr() const;

private:
T *ptr_;
RCPNode node_;
...

};

template<class T> RCP<T> rcp( T* p, bool owns_mem = true );

template<class T, class Dealloc_T> RCP<T> rcp( T* p, Deallo c_T dealloc,
bool owns_mem );

template<class T> Teuchos::RCP<T> rcpFromRef( T& r );

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObjPreDestroy( T* p, const Embedde d &embedded,

bool owns_mem = true );

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObjPostDestroy( T* p, const Embedd ed &embedded,

bool owns_mem = true );

template<class T, class Embedded>
RCP<T> rcpWithEmbeddedObj( T* p, const Embedded &embedded ,

bool owns_mem = true );

template<class T> bool is_null( const RCP<T> &p );
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template<class T> bool operator==( const RCP<T> &p, ENull ) ;

template<class T> bool operator!=( const RCP<T> &p, ENull ) ;

template<class T1, class T2> bool operator==( const RCP<T1 > &p1,
const RCP<T2> &p2 );

template<class T1, class T2> bool operator!=( const RCP<T1 > &p1,
const RCP<T2> &p2 );

template<class T2, class T1> RCP<T2> rcp_implicit_cast(c onst RCP<T1>& p1);

template<class T2, class T1> RCP<T2> rcp_static_cast(con st RCP<T1>& p1);

template<class T2, class T1> RCP<T2> rcp_const_cast(cons t RCP<T1>& p1);

template<class T2, class T1>
RCP<T2> rcp_dynamic_cast(const RCP<T1>& p1, bool throw_o n_fail = false);

template<class T1, class T2>
void set_extra_data(const T1 &extra_data, const std::str ing& name,

const Ptr<RCP<T2> > &p, EPrePostDestruction destroy_when = POST_DESTROY,
bool force_unique = true );

template<class T1, class T2>
const T1& get_extra_data( const RCP<T2>& p, const std::str ing& name );

template<class T1, class T2>
T1& get_nonconst_extra_data( RCP<T2>& p, const std::stri ng& name );

template<class T1, class T2>
Ptr<const T1> get_optional_extra_data( const RCP<T2>& p, const std::string& name );

template<class T1, class T2>
Ptr<T1> get_optional_nonconst_extra_data( RCP<T2>& p, c onst std::string& name );

template<class Dealloc_T, class T>
const Dealloc_T& get_dealloc( const RCP<T>& p );

template<class Dealloc_T, class T>
Dealloc_T& get_nonconst_dealloc( const RCP<T>& p );

template<class Dealloc_T, class T>
Ptr<const Dealloc_T> get_optional_dealloc( const RCP<T> & p );

template<class Dealloc_T, class T>
Ptr<Dealloc_T> get_optional_nonconst_dealloc( const RC P<T>& p );

template<class TOrig, class Embedded, class T>
const Embedded& getEmbeddedObj( const RCP<T>& p );

template<class TOrig, class Embedded, class T>
Embedded& getNonconstEmbeddedObj( const RCP<T>& p );

template<class TOrig, class Embedded, class T>
Ptr<const Embedded> getOptionalEmbeddedObj( const RCP<T >& p );

template<class TOrig, class Embedded, class T>
Ptr<Embedded> getOptionalNonconstEmbeddedObj( const RC P<T>& p );

template<class T>
std::ostream& operator<<( std::ostream& out, const RCP<T >& p );

} // namespace Teuchos
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B RCP quick-start and reference

This appendix presents a short, but fairly comprehensive, quick-start for the use ofRCP. The use
cases described here should cover the overwhelming majority of the use instances ofRCPin a typical
program.

The following class hierarchy will be used in the C++ examples given below.

class A { public: virtual ˜A(){} A& operator=(const A&){} vi rtual void f(){} };
class B1 : virtual public A {};
class B2 : virtual public A {};
class C : virtual public B1, virtual public B2 {};

class D {};
class E : public D {};

All of the following code examples used in this appendix are assumed to be in the names-
paceTeuchos or have appropriateusing Teuchos::... declarations. This removes the need to
explicitly useTeuchos:: to qualify classes, functions and other declarations from the Teuchos
namespace. Note that some of the runtime checks are denoted as “debug runtime checked” which
means that checking will only be performed in a debug build (that is one where the macroDEBUG
is defined at compile time).

1. Creation of RCP objects

(a) Initializing a RCP object to NULL

RCP<C> c_ptr;

or

RCP<C> c_ptr = null;

(b) Creating a RCP object usingnew

RCP<C> c_ptr = rcp(new C);

or

RCP<C> c_ptr(new C);

NOTE: Prefer to define and use non-member constructor functions that yeild:

RCP<C> c_ptr = newC();

(c) Creating a RCP object to an array allocated usingnew[n]
See the classTeuchos::ArrayRCP and the functionarcp<T>(int n) .

(d) Initializing a RCP object to an object notallocated with new

C c;
RCP<C> c_ptr = rcpFromRef(c);

(e) Copy constructor (implicit casting)
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RCP<C> c_ptr = rcp(new C); // No cast
RCP<A> a_ptr = c_ptr; // Cast to base class
RCP<const A> ca_ptr = a_ptr; // Cast from non-const to const

(f) Representing constantness and non-constantness

i. Non-constant pointer to non-constant object
RCP<C> c_ptr;

ii. Constant pointer to non-constant object
const RCP<C> c_ptr;

iii. Non-Constant pointer to constant object
RCP<const C> c_ptr;

iv. Constant pointer to constant object
const RCP<const C> c_ptr;

2. Reinitialization of RCP objects (using assignment operator)

(a) Resetting from a raw pointer

RCP<A> a_ptr;
a_ptr = rcp(new A());

(b) Resetting to null

RCP<A> a_ptr = rcp(new A());
a_ptr = null; // The A object will be deleted here

(c) Assigning from aRCP object

RCP<A> a_ptr1;
RCP<A> a_ptr2 = rcp(new A());
a_ptr1 = a_ptr2; // Now a_ptr1 and a_ptr2 point to same A objec t

3. Accessing the reference-counted object

(a) Access to object reference (debug runtime checked)

C &c_ref = *c_ptr;

(b) Access to object pointer (unchecked, may returnNULL, NOT RECOMMENDED)

C *c_rptr = c_ptr.get();

WARNING: Avoid exposing raw C++ pointers in your program!

(c) Access to object pointer (debug runtime checked, will not return NULL, NOT REC-
OMMENDED)

C *c_rptr = &*c_ptr;

WARNING: Avoid exposing raw C++ pointers in your program!

(d) Access of object’s member (debug runtime checked)

c_ptr->f();

(e) Testing for non-null

if (!is_null(a_ptr)) std::cout << "a_ptr is not null!\n";

or

if (a_ptr != null) std::cout << "a_ptr is not null!\n";
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(f) Testing for null

if (is_null(a_ptr)) std::cout << "a_ptr is null!\n";

or

if (a_ptr == null) std::cout << "a_ptr is null!\n";

4. Casting

(a) Implicit casting (see copy constructor above)

i. Using copy constructor (see above)

ii. Using conversion function

RCP<C> c_ptr = rcp(new C); // No cast
RCP<A> a_ptr = rcp_implicit_cast<A>(c_ptr); // To base
RCP<const A> ca_ptr = rcp_implicit_cast<const A>(a_ptr); // To const

(b) Casting awayconst

RCP<const A> ca_ptr = rcp(new C);
RCP<A> a_ptr = rcp_const_cast<A>(ca_ptr); // cast away con st!

(c) Static cast (no runtime check)

RCP<D> d_ptr = rcp(new E);
RCP<E> e_ptr = rcp_static_cast<E>(d_ptr); // Unchecked, u nsafe?

(d) Dynamic cast (runtime checked, failed cast allowed)

RCP<A> a_ptr = rcp(new C);
RCP<B1> b1_ptr = rcp_dynamic_cast<B1>(a_ptr); // Checked , safe!
RCP<B2> b2_ptr = rcp_dynamic_cast<B2>(b1_ptr); // Checke d, safe!
RCP<C> c_ptr = rcp_dynamic_cast<C>(b2_ptr); // Checked, s afe!

(e) Dynamic cast (runtime checked, failed cast not allowed)

RCP<A> a_ptr1 = rcp(new C);
RCP<A> a_ptr2 = rcp(new A);
RCP<B1> b1_ptr1 = rcp_dynamic_cast<B1>(a_ptr1,true); // Success!
RCP<B1> b1_ptr2 = rcp_dynamic_cast<B1>(a_ptr2,true); // Throw std::bad_cast!
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5. Customized deallocators

(a) Creating a RCP object with a custom deallocator

RCP<C> c_ptr = rcp(new C[N],DeallocArrayDelete<C>(),tru e);

(b) Access customized deallocator (runtime checked, throws onfailure)

const DeallocArrayDelete<C>
&dealloc = get_dealloc<DeallocArrayDelete<C> >(c_ptr);

(c) Access optional customized deallocator

Ptr<const DeallocArrayDelete<C> >
dealloc = get_optional_dealloc<DeallocArrayDelete<C> > (c_ptr);

if (!is_null(dealloc))
std::cout << "This deallocator exits!\n";

6. Managing extra data

(a) Adding extra data (post-destruction of extra data)

set_extra_data(rcp(new B1), "A:B1", inOutArg(a_ptr));

(b) Adding extra data (pre-destruction of extra data)

set_extra_data(rcp(new B1), "A:B1", inOutArg(a_ptr), PR E_DESTORY);

(c) Retrieving extra data

get_extra_data<RCP<B1> >(a_ptr,"A:B1")->f();

(d) Resetting extra data

get_extra_data<RCP<B1> >(a_ptr,"A:B1") = rcp(new C);

(e) Retrieving optional extra data

Ptr<const RCP<B1> > b1 =
get_optional_extra_data<RCP<B1> >(a_ptr,"A:B1");

if (!is_null(b1))
(*b1)->f();

7. Embedded objects

(a) Creating an RCP object with embedded data

RCP<D> d_ptr(new D);
RCP<A> a_ptr rcpWithEmbeddedObj(new C, rcp(new D));

(b) Extract reference to const embedded object

const RCP<D> &d_ptr = getEmbeddedObj<C,RCP<D> >(a_ptr);

(c) Extract reference to nonconst embedded object

RCP<D> &d_ptr = getNonconstEmbeddedObj<C,RCP<D> >(a_ptr );
d_ptr = null; // Sets the actual embedded RCP<D> object in a_p tr to null!
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C Commandments for the use ofRCP

Here are listed commandments for the use ofRCP. These commandments reinforce some of the
material in the quick-start in Appendix B. Along with each commandment is one or more anti-
commandments stating the negative of the commandment. C++ code fragments are also included to
demonstrate each commandment and anti-commandment.

Commandment 1 Thou shall put a pointer for an object allocated with operator new into aRCP
object only once. The best way to insure this is to call operator new directly in a call torcp(...)
to create a dynamically allocated object that is to be managed by aRCP object. Better yet, de-
fine and use non-member constructor functions and never use raw calls tonew at the application
programming level See item (1b) in Appendix B.

Anti-Commandment 1 Thou shall never give a raw C++ pointer returned from operator new to
more than oneRCP object.

Example:

A *ra_ptr = new C;
RCP<A> a_ptr1 = rcp(ra_ptr); // Okay
RCP<A> a_ptr2 = rcp(ra_ptr); // no, No, NO !!!!

Anti-Commandment 2 Thou shall never give a raw C++ pointer to an array of objects returned
from operatornew[] to aRCP object usingrcp(new C[n]).

Example:

RCP<std::vector<C> > c_array_ptr1 = rcp(new std::vector< C>(N)); // Okay
RCP<C> c_array_ptr3 = rcp(new C[n]); // no, No, NO!

Commandment 2 Thou shall only create aNULL RCP object by using the default constructor or
by using thenull enum (and its associated special constructor) (see item (1a) in Appendix B).
Trying to assign toNULL or 0 will not compile.

Anti-Commandment 3 Thou shall not create aNULL RCP object using the templated function
rcp(...) since it is very verbose and complicates maintenance.

Example:

RCP<A> a_ptr1 = null; // Yes :-)
RCP<A> a_ptr2 = rcp<A>(NULL); // No, too verbose :-(
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Commandment 3 Thou shall only pass a raw pointer for an object that is notallocated by operator
new (e.g. allocated on the stack) into aRCP object by using the templated functionrcpFromRef<T>(T&
t) described in Appendix B.

Anti-Commandment 4 Thou shall never pass a pointer for an object notallocated with operator
new into aRCP object without settingowns mem to false.

Example:

C c;
RCP<A> a_ptr1 = rcpFromRef(c); // Yes :-)
RCP<A> a_ptr2 = rcp(&c); // no, No, NO !!!!

Commandment 4 Thou shall only cast betweenRCP objects using the default copy constructor
(for implicit conversions) and the nonmember template functions rcp implicit cast<>(-
...),rcp static cast<>(...),rcp const cast<>(...) andrcp dynamic cast<>(-
...) (see item (4) in Appendix B).

Anti-Commandment 5 Thou shall never convert betweenRCP objects using raw pointer access.

Example:

RCP<A> a_ptr = rcp(new C);
RCP<B1> b1_ptr1 = rcp_dynamic_cast<B1>(a_ptr); // Yes :-)
RCP<B1> b1_ptr2 = rcp(dynamic_cast<B1*>(a_ptr.get())); // no, No, NO !!!
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D Recommendations for passing objects to and from C++ functions

Below are recommended idioms for passing required1 and optional2 arguments into and out of
C++ functions for various use cases and different types of objects. These idioms show how to write
function prototype argument declarations which exploit the C++ language in a way that makes these
function prototypes as self documenting as possible, avoids coding errors, and increases readability3

of C++ code. In general,RCP<T>objects should be passed and manipulated as though they where
raw C++ pointerT* objects. However, while raw C++ pointer objects should generally be passed
by value,RCPobjects should generally be passed by reference to avoid unecessary copy constructor
calls.

Argument purpose Non-Persisting Persisting

non-changeable object (required1)

.

S s
or
const S s
or
const S &s

const RCP<const S> &s

non-changeable object (optional2) const Ptr<const S> &s const RCP<const S> &s
changeable object const Ptr<S> &s const RCP<S> &s

C++ declarations for passing small concrete objects (i.e. with value semantics) to and from functions
whereS is a place holder for an actual built-in or user-defined data type.

Argument purpose Non-Persisting Persisting

non-changeable object (required1) const A &a const RCP<const A> &a
non-changeable object (optional2) const Ptr<const A> &a const RCP<const A> &a
changeable object const Ptr<A> &a const RCP<A> &a

C++ declarations for passing abstract objects (i.e. with reference or pointer semantics) or large
concrete objects (i.e. that are too expensive to copy) to andfrom functions whereA is a place holder
for an actual (abstract) C++ base class.

1Required arguments must be bound to valid objects (i.e. can not beNULL)
2Optional arguments may beNULL in some cases
3What makes code more “readable” is subjective of course.
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E Listing: Example C++ program using raw dynamic memory
management

#include "example_get_args.hpp"

// Abstract interfaces
class UtilityBase {
public:

virtual void f() const = 0;
};
class UtilityBaseFactory {
public:

virtual UtilityBase* createUtility() const = 0;
};

// Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this ="<<this<<"\n"; }
};
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this ="<<this<<"\n"; }
};
class UtilityAFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityA( ); }
};
class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB( ); }
};

// Client classes
class ClientA {
public:

void f( const UtilityBase &utility ) const { utility.f(); }
};
class ClientB {

UtilityBase *utility_;
public:

ClientB() : utility_(0) {}
˜ClientB() { delete utility_; }
void initialize( UtilityBase *utility ) { utility_ = utilit y; }
void g( const ClientA &a ) { a.f(*utility_); }

};
class ClientC {

const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:
ClientC( const UtilityBaseFactory *utilityFactory, bool shareUtility )

:utilityFactory_(utilityFactory)
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,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

˜ClientC() { delete utilityFactory_; delete utility_; }
void h( ClientB *b ) {

if( shareUtility_ ) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility()) ;

}
};

// Main program
int main( int argc, char* argv[] )
{

// Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA,&shareUtility);
// Create factory
UtilityBaseFactory *utilityFactory = 0;
if(useA) utilityFactory = new UtilityAFactory();
else utilityFactory = new UtilityBFactory();
// Create clients
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory,shareUtility);
// Do some stuff
c.h(&b1);
c.h(&b2);
b1.g(a);
b2.g(a);
// Cleanup memory
delete utilityFactory;

}
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F Listing: Refactored example C++ program usingRCP

#include "Teuchos_RCP.hpp"
#include "example_get_args.hpp"

// Inject symbols for RCP so we don’t need Teuchos:: qualific ation
using Teuchos::RCP;
using Teuchos::rcp; // Warning! This can be dangerous and is not to be used in general!
using Teuchos::Ptr;

// Abstract interfaces
class UtilityBase {
public:

virtual void f() const = 0;
};
class UtilityBaseFactory {
public:

virtual RCP<UtilityBase> createUtility() const = 0;
};

// Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this ="<<this<<"\n"; }
};
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this ="<<this<<"\n"; }
};
class UtilityAFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new U tilityA()); }
};
class UtilityBFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new U tilityB()); }
};

// Client classes
class ClientA {
public:

void f( const UtilityBase &utility ) const { utility.f(); }
};
class ClientB {

RCP<UtilityBase> utility_;
public:

void initialize(const RCP<UtilityBase> &utility) { utili ty_=utility; }
void g( const ClientA &a ) { a.f(*utility_); }

};
class ClientC {

RCP<const UtilityBaseFactory> utilityFactory_;
RCP<UtilityBase> utility_;
bool shareUtility_;
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public:
ClientC( const RCP<const UtilityBaseFactory> &utilityFa ctory, bool shareUtility )

:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

void h( const Ptr<ClientB> &b ) {
if( shareUtility_ ) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility()) ;

}
};

// Main program
int main( int argc, char* argv[] )
{

// Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA,&shareUtility);
// Create factory
RCP<UtilityBaseFactory> utilityFactory;
if(useA) utilityFactory = rcp(new UtilityAFactory());
else utilityFactory = rcp(new UtilityBFactory());
// Create clients
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory,shareUtility);
// Do some stuff
c.h(&b1);
c.h(&b2);
b1.g(a);
b2.g(a);

}
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